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B López and W Kinzel
Institut für Theoretische Physik, Universität Würzburg, Am Hubland, D-97074 Ẅurzburg,
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Abstract. A perceptron withN random weights can store of the order ofN patterns by
removing a fraction of the weights without changing their strengths. The critical storage capacity
as a function of the concentration of the remaining bonds for random outputs and for outputs
given by a teacher perceptron is calculated. A simple Hebb-like dilution algorithm is presented
which, in the teacher case, reaches the optimal generalization ability.

1. Introduction

Neural networks are able to learn from examples and to find an unknown rule. Storage
capacities and generalization abilities have been calculated for a variety of network
architectures within the framework of statistical mechanics [1]. Special interest has been
devoted to diluted networks, where only a fraction of the neurons is connected [2, 3]. The
most popular example of a diluted network which appears in nature is the human brain.
Every neuron is connected to roughly 10 000 others, whereas their total number is about
107 times larger. Theoretical studies indeed show, that the effective storage capacity per
neuron in diluted systems can be substantially larger than in undiluted networks [4].

So far, dilution of synapses has been considered in addition to the usual dynamical
modification of the bonds, which takes place in the learning phase [3]. Motivated by
biological observations [5], which indicate that at early stages of development of the brain,
synapses are removed if their strength is not appropriate, we address the question whether it
is possible to store patterns in a network with randomly chosen coupling strengths only by
removing a fraction of these bonds without changing their strength. This is a nontrivial task,
since given a specific set of patterns it isa priori not clear which of the bonds have to be
removed. Previous studies [8] have considered a learning algorithm which removes weights
that are frustrated in at least one of the patterns. However, this simple method removes too
many weights, hence the storage capacity increases with logN only. In this paper we show
that it is possible to learn of the order ofN patterns perfectly and to generalize by removing
a fraction of the weights. We focus on the perceptron, as it is the simplest network for which
a tractable calculation is feasible. The same procedure, however, should be applicable to
general network classes such as multi-layer perceptrons or attractor networks.

The paper is organized as follows. In section two we introduce the model and calculate
the critical storage capacity for a random input–output relation following the standard
statistical mechanics approach established by Gardner [6]. Section three examines the
properties of a perceptron which learns from an undiluted teacher perceptron. A simple
Hebb-like dilution algorithm that reaches the optimal generalization ability is presented in
section four. In the last section we close with a summary.
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2. The model for random input–output relations

The diluted perceptron classifies an input patternξµ according to

σµ = sgn

(
1√
N

N∑
i=1

ciJiξ
µ

i

)
. (1)

WhereJi are the components of the weight vector drawn at random from a distribution
P(Ji). Theci are binary decision variables which can take the values 0 or 1 and determine
whether theith couplingJi is removed or kept, respectively. For a given set of input–output
pairs{ξµ, sµ}pµ=1 the classification is correct if

sµ
1√
N

N∑
i=1

ciJiξ
µ

i > 0 ∀µ = 1, . . . , p. (2)

We suppose that the inputsξµi are drawn at random from a distribution with zero mean
and unit variance and we choosesµ = ±1 with equal probability and independently of the
inputs. The concentration of the remaining bonds is defined to bec = N−1∑N

i=1 ci and
thus lies between 0 and 1.

We are interested whether the maximum number of patternspmax, which are correctly
classified, can be of the order of their input dimensionN , resulting in a critical storage
capacity ofαc = pmax/N , for a fixed value of the concentrationc of remaining bonds in
the thermodynamic limit(N → ∞). Let us first consider the extreme cases. Forc = 0
all bonds have been removed and no classification is possible, so thatαc(c = 0) = 0. For
c = 1 all bonds are present and the classification is at random, so thatαc(c = 1) → 0 as
N →∞. For intermediate values ofc we shall calculateαc(c) using Gardner’s phase space
approach [6, 7].

From a technical point of view the problem is related to the Ising perceptron [7, 16]
and other discrete models [9], as well as to the knapsack problem [10, 11], where binary
dynamical variables also appear. Note that in contrast to the common approach where the
couplingsJi are the dynamical variables, here they represent, in addition to the patterns, a
quenched disorder which has to be averaged out.

For a fixed concentrationc, the number of allowed configurations according to (2) is
given by

N (c) =
∑
{ci }

p∏
µ=1

2

(
sµ

1√
N

N∑
i=1

ciJiξ
µ

i − κ
)
δKr

( N∑
i=1

ci − cN
)
. (3)

We introduce, as usual, the stability parameterκ which should be positive. The
corresponding entropy per bond of the microcanonical ensemble follows from

S(c) = 1

N
〈〈lnN (c)〉〉 = lim

n→0

1

nN
ln〈〈N n(c)〉〉 (4)

where the last equality results from the replica trick. The quenched averages〈〈· · ·〉〉 have
to be performed over the distributions of the patterns, outputs and couplings. Following the
steps of the calculation by Gardner and Derrida [7] one can rewrite the replicated number
of configurations using the integral representation of the theta function in (3). The averages
over the pattern and output distributions lead to the exponential factor〈∏

i

exp

(
− J

2
i

2N

∑
µ

(∑
α

cαi x
α
µ

)2)〉
{J }
. (5)
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Herexαµ are the conjugate variables to the local fieldsλαµ andα denotes the replica index
running from 1 ton. The average over the couplings has still to be done. A straightforward
evaluation, however, leads to an expression which cannot be rewritten in terms of an
exponential, as it is convenient, for the argument of the exponent in (5) is not necessarily
infinitesimal due to the sum over all patterns. Instead, we introduce at this point the order
parameters

qαβ = 1

N

N∑
i=1

J 2
i c

α
i c
β

i (α, β = 1, . . . , n;α < β) (6)

Qα = qαα = 1

N

N∑
i=1

J 2
i c

α
i (α = 1, . . . , n) (7)

and leave the average over the distribution of the couplings for the integral representations
of the delta functions fixingqαβ andQα. In addition we have a third order parameter
Eα which fixes the concentrationc. We seek a replica symmetric solution, i.e.qαβ = q,
Qα = Q andEα = E. Carrying out the sum over thecαi and using the saddle-point method
we obtain for the entropy in the thermodynamic limit:

S(c) = α
∫

Dt ln H

(
κ +√qt√
Q− q

)
+ 1

2
Fq − 1

2
fQ+ 1

2
cE

+
∫

dJP (J )
∫

Dt ln(1+ exp(
√
F |J |t + 1

2(f J
2− FJ 2− E))) (8)

whereF andf are the conjugate order parameters toq andQ respectively and we have
used the notations:

Dt ≡ dt
exp(− 1

2t
2)√

2π
H(x) =

∫ ∞
x

Dt. (9)

For the distribution of the couplingsP(Ji) we will focus on two cases:|Ji | = 1 (note,
that the entropy (8) depends only on the absolute value ofJi) andJi drawn from a normal
distribution i.e. dJP (J ) = DJ . In the first case it follows thatQ = c from (7) and the
definition of c. We solve the saddle-point equations∂S/∂q = ∂S/∂F = ∂S/∂E = 0. The
critical storage capacity as determined by Gardner and Derrida [7] would be reached as
q approachesc. This, however, leads to a negative entropy of the system, as frequently
observed in discrete problems [13]. We therefore identify the critical storage capacity as
the value ofα at which the entropy (8) vanishes, as it has become the standard way by
now [9, 11, 14]. The resulting curve for the critical storage capacityαc is shown in figure 1
as a function of the concentrationc. As expectedαc vanishes at both extremes ofc. We
observe a maximum ofαc ≈ 0.59 at c ≈ 0.32. This means, that about2

3 of the bonds
have to be removed in order to reach the maximal value ofαc. It is somewhat surprising,
since as a function ofc, the maximal number of configurations{ci} lies at c = 0.5 and is
exponentially larger inN than for any other value of the concentration. In section 4 we
will come back to this point.

It is worth noting, that the case|Ji | = 1 can be mapped onto the Ising perceptron with
couplings 0 or 1, as in (2) one can define the new patternsχ

µ

i = Jiξµi and view theci as
the couplings. The distribution of theχµi also has zero mean and unit variance. The critical
storage capacity for the(0, 1) Ising perceptron has been calculated by Gutfreund and Stein
[9] with the zero-entropy (ZE) ansatz and was found to be 0.59 in agreement with the value
found here at the maximum.

We performed an analysis of the local stability of the replica symmetric (RS) solution
according to de Almeida and Thouless (AT) [15] and obtained the curve denoted as AT line
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Figure 1. The critical storage capacityαc as a function of the concentrationc for κ = 0
and random outputs. The full line is the zero entropy RS–solution for|Ji | = 1 and the long
broken curve is the corresponding AT–line beyond which it would become locally unstable. The
broken curve is the RS–solution forJi drawn from a normal distribution. Results from complete
enumerations of systems with sizes 96 N 6 24 are shown as circles and triangles, for both
choices ofP(Ji) respectively. Standard errors are of symbol size.

in figure 1. For values ofα that lie above this curve the RS solution is locally unstable. Our
result forαc(c) lies below the AT line for allc and is therefore locally stable. Nonetheless,
global stability is not assured. For this reason we also performed complete enumerations
of all possible dilution vectors for finite systems in the range 96 N 6 24. For c = 1
finite-size effects lead toαc ∼ N−1, since the probability of classifying one pattern correctly
by chance is1

2. In contrast, for values ofc around the maximum, the numerical results seem
to underestimate the theoretical values. A finite-size scaling analysis forc = 1

3 gives the
extrapolated value ofαc(

1
3) = 0.586±0.004 forN →∞ in agreement with the RS-solution

(0.58935) at the same concentration. The general shape of the curve is well confirmed by
the numerical results.

In the case where theJi are drawn at random from a normal distribution the picture
changes quantitatively. Now, for a fixedi, 〈Jiξµi 〉 = 0 as before, but〈(Jiξµi )2〉 = J 2

i 〈ξµi 2〉 =
J 2
i which is in general different from unity as in the previous case. As a consequenceQ

is different fromc and we have to solve the additional saddle-point equations∂S/∂Q =
∂S/∂f = 0. The ZE condition yields forκ = 0 the critical storage capacity, also depicted
in figure 1. Similarly, the curve has a maximum atc ' 0.34, the critical capacity however
is lowered over a wide range of the concentration with respect to the binary case. Our inter-
pretation of this effect is that in the Gaussian case the dilution variables are mainly used to
remove the large couplings(|Ji | > 1) and only a few of them remain for learning. There-
fore the storage capacityαc is lower than for the binary weights. The order parameterQ

measures the effective size of the remaining componentsJi . For all c the RS solution gives
Q < c, supporting the above argument. In addition we measured the probability distribution
of the size of remaining couplings in complete enumerations and found that large couplings
are likely to be removed. The values ofαc for finite N are displayed in figure 1 as well.
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3. Learning with a teacher

A teacher perceptronB classifies a patternξµ according to

sµ = sgn

(
1√
N
B · ξµ

)
. (10)

We choose a teacher vector which is not diluted and has the normalizationB2 = N . A
transition to perfect generalization through dilution cannot be expected as in other discrete
systems where the structure of teacher and student coincides [23]. The student perceptron
with componentsciJi can only remove part of its weights in order to learn perfectly a set
of examples given by (10), resulting in a finite storage capacity.

A straightforward evaluation of the entropy under the RS assumption yields

S(c) = 2α
∫

DtH

(
R
√
Q√

q −QR2
t

)
ln H

(
κ +√qt√
Q− q

)
+1

2
Fq − 1

2
fQ+ 1

2
cE + 1

2
GR

√
Q+

∫
dBPT(B)

∫
dJ P (J )

×
∫

Dt ln

(
1+ exp

(√
F |J |t + 1

2
(f J 2− FJ 2− E −GBJ)

))
(11)

where the overlapR = ∑
i ciJiBi/(

√
QN) between diluted student and teacher, and its

conjugateG has been introduced.PT(B) is the distribution of the teacher components.
We focus again on the two cases where|Ji | = |Bi | = 1 or both chosen independently

at random from a normal distribution. The corresponding critical storage capacityαc

determined with the ZE condition is shown in figure 2 as a function of the concentration
of remaining bonds. Once more, we observe a maximum ofαc at c ≈ 1

3. The critical
storage capacity is higher than for random outputs indicating that the problem, although
unlearnable, is easier with examples from a teacher.

An important point to note is that the generalization ability defined as the probability
to classify a new unseen pattern correctly (as the teacher) is poor compared with the value
which could be achieved byintelligent dilution. For c = 0.3, R ' 0.32 in the binary case
|Ji | = |Bi | = 1, whereas an overlap ofR = √0.3' 0.55 could be possible according to the
following argument. The productBiJi should be+1 for as many sites as possible in order to
maximizeR. SinceBi andJi are drawn at random they will coincide inN/2 of the cases for
N →∞. Forc 6 0.5 we choose all thoseci = 1 for whichBiJi = +1 up to a total number
of cN , so thatRmax= cN/(√cN) = √c. If c is larger than 0.5 then we also have to add up
(cN −N/2) times a value of−1 andRmax = (N/2− cN +N/2)/(√cN) = (1− c)/√c.
Perfect storage without errors lowers the overlapR, an effect known asoverfitting, which
can be overcome by allowing a finite training error (see section 4).

Up to now, we have assumed, that studentJ and teacherB are uncorrelated before
the dilution. In biological systems however, we would rather expect to find synaptical
structures, which are alreadypreparedfor a specific task before the learning process starts.
In our model we can mimic it by allowing an initial positive overlapR0, and therefore
certain similarity, between teacher and student. Let us choose

P(J ) = 1+ R0

2
δ(J − B)+ 1− R0

2
δ(J + B) (12)

with 06 R0 6 1. In (1+ R0)N/2 of the cases the components of teacher and student will
coincide and in(1−R0)N/2 they will be opposed. Since we are not allowed to change the
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Figure 2. The critical storage capacityαc as a function of the concentrationc for κ = 0 and
outputs from an undiluted teacher perceptron. The upper curve is for|Ji | = |Bi | = 1 and the
lower for Ji andBi both Gaussian. The circles and triangles are the corresponding numerical
results from complete enumerations of system with sizes up toN = 20, standard errors are of
symbol sizes.

Figure 3. The critical storage capacityαc as a function of the concentrationc for κ = 0 and
outputs from a teacher with|Bi | = 1 for different values of the initial overlapR0 betweenJ
andB. R0 = 1.0, 0.9, 0.7, 0.3, 0.0 (from top to bottom). The circles are numerical results from
complete enumerations of systems with sizes 256 N 6 400 andc close to 1.

values ofJi , but at best to remove the bond, we will not reach perfect generalization even
for largeR0. The same would hold even if we chose a diluted teacher.
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We have calculated the critical storage capacity for|Bi | = 1 as a function ofR0 and
c and find the results plotted in figure 3. ForR0 = 0 we recover the uncorrelated case,
whereas with increasingR0 the storage capacity is enhanced for allc. At the same time
the maximum of the curve moves towards higher values of the concentration, as less bonds
have to be removed in order to mimic the teacher. ForR0 = 1 teacher and student are
identical before dilution. Although this situation is of less relevance from a biological point
of view, it offers an interesting physical solution. If a fraction of the bonds is now removed,
we obtain a finite storage capacity. For increasing concentrationc, we would expect the
capacity to increase at the same time. Abovec ' 0.82, however, we find that it decreases
and finally tends to zero forc→ 1. At c = 1 we haveαc = ∞ per definition, hencec = 1
is a singular point. This surprising behaviour may be understood if we look at the annealed
approximation [22] for the entropy

Sann(c) = 1

N
ln〈〈N (c)〉〉. (13)

For R0 = 1 we haveR = √c, thus the probability that a pattern is classified correctly is
(1−π−1 arccos

√
c). Since all possible dilution vectors have for fixedc the same overlapR

with the teacher, the averaged number〈〈N (c)〉〉 of allowed configurations simply factorizes
into the the total number

(
N

cN

)
and the probability thatp patterns are classified correctly:

〈〈N (c)〉〉 =
(
N

cN

)(
1− 1

π
arccos

√
c

)p
. (14)

Using the ZE condition we obtain in the thermodynamic limit for the critical storage capacity
in the annealed approximation

αann(c) = c ln c + (1− c) ln(1− c)
ln
(
1− 1

π
arccos

√
c
) (15)

which for c→ 1 results in

αann(c→ 1)→ lim
c→1
−4π
√

1− c ln
√

1− c→ 0. (16)

Since αann(c) is an upper bound forαc(c), the critical storage capacity has to decrease
to zero as well whenc tends to 1. From (14) we see, that although the probability of
classifying one pattern correctly tends to one forc→ 1, at the same time the total number of
dilution vectors decreases rapidly, such that the averaged number of allowed configurations
is no longer exponentially large inN . Perfect storage of patterns is different from optimal
generalization, which in this case becomes better the closerc is to 1. In figure 3 we also
included results from complete enumerations of systems with 256 N 6 400 forR0 = 1
andc close to 1. They confirm thatαc decreases in this region.

4. A simple Hebb-like dilution algorithm

As we have seen in the previous sections, Gardner’s method is very powerful when asking
if there exists, on average, a set ofci such that all perceptron conditions (2) are satisfied, but
it does not provide us with the corresponding dilution vector for a specific set of patterns
ξµ, outputssµ and couplingsJi . The development of a learning, or in our case dilution
algorithm, is an independent task, which in the case of binary variablesci = 0, 1 becomes
extremely difficult and compares with the binary perceptron problem or the knapsack
problem. In the worst case, the number of computational steps towards the optimal solution
scales exponentially with the sizeN of the system. The most successful approaches try to
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find the global minimum of a properly defined energy function, which penalizes the violation
of constraints, by using sequential descent [17] or simulated annealing [18] strategies.
Although an algorithm based on mean-field annealing has proven to be very effective in
finding solutions to the knapsack problem [10], none of the known techniques yields the
critical values for the storage capacity predicted by Gardner calculations. Typically, in large
systems, the solutions still violate a finite fraction of the imposed constraints.

In view of these general difficulties, we cannot expect to find the optimal dilution vector
c, which allows us to store perfectlyαcN patterns for largeN , within a reasonable time.
Rather we present here a simple dilution algorithm, which gives us an insight into the basic
properties of the solutions and has optimal generalization ability forα→∞.

Our aim is to fulfil all constraints (2) by removing a fraction(1− c)N of the bondsJi .
If we think of the termsJiξ

µ

i s
µ as matrix elementsaiµ of anN×p matrix, then we want all

p vertical sums
∑N

i=1 aiµ(µ = 1, . . . , p) to be positive. For this purpose, we are allowed
to remove(1− c)N rows of the matrix. The idea is to remove those, which contain many
negative elementsaiµ, since these contribute in many vertical sums negatively. Let us take
away all rowsi with horizontal sums

∑p

µ=1 aiµ smaller than a thresholdh, so that

ci = θ
(

1√
N

p∑
µ=1

Jiξ
µ

i s
µ − h

)
. (17)

The largerh, the moreci will be zero, leading to a lower concentrationc. From a different
perspective one can view (17) as comparing the Hebb couplingsHi =

∑p

µ=1 ξ
µ

i s
µ/
√
N of

the problem [19] withJi , the ones imposed at random. If their productHiJi is larger than
the thresholdh, thenJi is accepted as the coupling strength. Ash becomes more and more
positive, this is only the case ifHi andJi agree in their sign.

Let us now give a simple derivation of the critical storage capacity for random input–
output pairs and|Ji | = 1, which results from (17) by allowing a certain percentage of
errors. For simplicity, suppose thatξµi = ±1 with equal probability. Then,aiµ = ±1
with equal probability and the horizontal and vertical sums have, in the limitN → ∞, a
Gaussian distribution with zero mean and variancep andN , respectively. According to
(17) we remove all horizontal sums which are smaller thanh. The resulting concentration
is c = ∫∞

h/
√
α

Dz = H(h/
√
α) and the new mean of the horizontal sums is〈HS〉 =

√
p exp(− 1

2h
2/α)/

√
2πc2. The new vertical sums still have a Gaussian distribution, but

now with mean〈VS〉 = c〈HS〉/α and variancecN for N → ∞. The fraction of errors is
thus equal to the integral over the Gaussian tail below zero:

learning error≡ εL =
∫ 0

−∞

1√
2π

1√
cN

exp

(
−1

2

(z − 〈VS〉)2
cN

)
= H

( 〈VS〉√
cN

)
. (18)

For a fixed errorεL = H(A) and fixed concentrationc, we obtain for the storage capacity

α(c,A) = exp(−(H−1(c))2)

2πcA2
(19)

with H−1(x) the inverse function of H(x). Figure 4 shows the resultingα for A = 1 (εL '
15.9%) as a function ofc. The maximum ofα is reached atc ≈ 0.27, which is not too
far from 0.32, the concentration at which the maximalαc was obtained according to the
Gardner calculation with the ZE condition (see figure 1). Also, the shape of the curve is
similar, for different values ofεL (or A), α(c,A) is simply rescaled. At first sight one
would expect that ash increases, the mean of the vertical sums〈VS〉 increases, leading to
a lower learning error. This however is prevented by two effects. First, as〈HS〉 increases,
〈VS〉 does not necessarily increase, since〈VS〉 ∼ c〈HS〉 andc is lowered dramatically with
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Figure 4. The storage capacityα as a function of the concentrationc for |Ji | = 1, κ = 0 and
A = 1(εL ' 15.9%). The lower curve is for randomly chosen outputs and the upper curve for
outputs from a teacher with|Bi | = 1.

increasingh. As a result, the maximal storage capacity would be atc = 0.5 for fixed εL.
The second effect is that the width of the distribution of vertical sums is proportional to√
c, lowering the learning error for smaller values ofc. If c is too small, however, the gain

is compensated by the exponential factor in〈HS〉, which tends to zero. As a consequence,
the maximum storage capacity for fixedεL lies at a value ofc somewhat smaller than 0.5.

In figure 5 the learning errorεL(c, α) is plotted as a function ofα for h = 0(⇔ c = 0.5).
For smallα, εL is small, as is typical for the Hebb couplings and tends to 0.5 forα→∞.

A more interesting quantity is the generalization errorεG, defined as the probability of
correctly classifying a new patternξ0, which does not belong to the training set. For a
random input–output relationεG = 0.5, since the classifications0 of ξ0 is at random. In
the presence of a teacherB, however, we can expect to reach a lower generalization error.
A straightforward evaluation (see e.g. [20]) yields for|Ji | = 1

εL(c, α) = 2
∫ ∞

0
DsH

(
sR
√
c + q√

c
√

1− R2

)
(20)

εG(c, α) = 1

π
arccosR (21)

with

c = 1
2〈H(h−)+ H(h+)〉Bi (22)

R = 1

2
√
c
〈Bi(H(h−)− H(h+))〉Bi (23)

q = 1

2
√

2πα

〈
exp

(
−1

2
h2
−

)
+ exp

(
−1

2
h2
+

)〉
Bi

(24)

where

h+ = h√
α
+ Bi

√
2α

π
h− = h√

α
− Bi

√
2α

π
. (25)
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Figure 5. Learning errorεL (full lines) and generalization errorεG (broken lines) as a function
of α for h = 0(⇔ c = 0.5) and |Ji | = 1 for random outputs, a binary teacher and a Gaussian
teacher.

The average is to be performed over the distributionPT(Bi) of the teacher components
Bi . As before,c is the concentration of the remaining bonds andR the normalized overlap
between diluted student and teacher. The parameterq (not to be confused withq defined by
(6)) does not seem to have a direct physical meaning, but in a certain way it does take into
account the randomness which is still inherent forR less than 1. In the extreme case where
we ignore the teacher by setting allBi = 0, we obtainR = 0, q = exp(− 1

2h
2/α)/

√
2πα

and recover forεL the expression for random outputs (18). The above result forεL andεG

is similar to the one obtained with the clipped-Hebb algorithm for the perceptron [21]. This
comes as no surprise, as our prescription (17) is also in some sense a way ofclipping the
bonds.

For all α and c we find εL < εG and forα → ∞ and c fixed, εL → εG, as it should.
The most important feature is, however, that in this same limit the optimal generalization
error is reached. Forα→∞ andc fixed by choosingh appropriately, we obtain from (23)
for |Bi | = 1:

R =

√
c for c 6 1

2

1− c√
c

for c > 1
2

(26)

which is exactly the maximal overlap that can be achieved by removing(1− c)N bonds
(see section 3). For a teacher with GaussianBi we find in the same limit:

R = 1√
2πc

exp

(
−1

2
(H−1(c))2

)
(27)

which is also the optimal overlap for this case, as can be shown easily.
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5. Conclusion

We have shown, that it is possible to store information in a neural network solely by the
dilution of synapses. Using Gardner’s phase-space approach the critical storage capacity of a
perceptron with random coupling vector was calculated as a function of the concentration of
remaining bonds for random input–output relations. We found a maximumαc ' 0.6 of the
capacity atc ' 1

3, i.e. after 2
3 of the bonds have been removed. Similar results are obtained

if the desired outputs are generated by an undiluted teacher perceptron, whose coupling
vector is uncorrelated to the initial student vector. In this case perfect learning is possible
up to a critical capacityαc(c), only. If the initial network has some prior knowledge, i.e.
if there is a nonzero overlap between the teacher and the initial student vector we find that
the maximum of the capacity moves towards higher concentrationsc.

The problem of finding the subset of couplings which have to be removed is
extremely difficult and is comparable with problems which belong to the NP-complete
class. Nevertheless, properties of a Hebb-like learning algorithm, which allows for a finite
fraction of errors in the training set, were calculated. The algorithm forα → ∞ reaches
the maximal overlap between the diluted random student and the undiluted teacher and
thus the lowest possible generalization error. As the Hebb-rule, it is a local algorithm that
accumulates information about the training set and decides at the end of this batch process
which of the couplings are removed. It would be more desirable to find a prescription that
removes disturbing couplingson-line. In contrast to common on-line learning algorithms
[12], where infinitesimal changes of the coupling vector are performed in every time step,
here we would remove single couplings. Whether this procedure can give satisfactory
results, similar to those obtained in the batch process, also for unlearnable rules, remains
open and should be studied in the future.
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[4] Kuhlmann P, Garćes R and Eissfeller H 1992J. Phys. A: Math. Gen.25 L593
[5] Scheich Het al 1991Memory, Organization and Locus of Change(Oxford: Oxford University Press)
[6] Gardner E 1988J. Phys. A: Math. Gen.21 257
[7] Gardner E and Derrida B 1988J. Phys. A: Math. Gen.21 271
[8] Kinzel W 1985Z. Phys.B 60 205

van Hemmen J L and van Enter A C D 1986Phys. Rev.A 34 2509
Jonker H J J andCoolen A C C 1993J. Phys. A: Math. Gen.26 563

[9] Gutfreund H and Stein Y 1990J. Phys. A: Math. Gen.23 2613
[10] Ohlsson M, Peterson C and Söderberg B 1993Neural Comput.5 808
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