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Abstract. A perceptron withN random weights can store of the order Nf patterns by
removing a fraction of the weights without changing their strengths. The critical storage capacity
as a function of the concentration of the remaining bonds for random outputs and for outputs
given by a teacher perceptron is calculated. A simple Hebb-like dilution algorithm is presented
which, in the teacher case, reaches the optimal generalization ability.

1. Introduction

Neural networks are able to learn from examples and to find an unknown rule. Storage
capacities and generalization abilities have been calculated for a variety of network
architectures within the framework of statistical mechanics [1]. Special interest has been
devoted to diluted networks, where only a fraction of the neurons is connected [2, 3]. The
most popular example of a diluted network which appears in nature is the human brain.
Every neuron is connected to roughly 10000 others, whereas their total number is about
10’ times larger. Theoretical studies indeed show, that the effective storage capacity per
neuron in diluted systems can be substantially larger than in undiluted networks [4].

So far, dilution of synapses has been considered in addition to the usual dynamical
modification of the bonds, which takes place in the learning phase [3]. Motivated by
biological observations [5], which indicate that at early stages of development of the brain,
synapses are removed if their strength is not appropriate, we address the question whether it
is possible to store patterns in a network with randomly chosen coupling strengths only by
removing a fraction of these bonds without changing their strength. This is a nontrivial task,
since given a specific set of patterns itaigriori not clear which of the bonds have to be
removed. Previous studies [8] have considered a learning algorithm which removes weights
that are frustrated in at least one of the patterns. However, this simple method removes too
many weights, hence the storage capacity increases with loigly. In this paper we show
that it is possible to learn of the order &f patterns perfectly and to generalize by removing
a fraction of the weights. We focus on the perceptron, as it is the simplest network for which
a tractable calculation is feasible. The same procedure, however, should be applicable to
general network classes such as multi-layer perceptrons or attractor networks.

The paper is organized as follows. In section two we introduce the model and calculate
the critical storage capacity for a random input—output relation following the standard
statistical mechanics approach established by Gardner [6]. Section three examines the
properties of a perceptron which learns from an undiluted teacher perceptron. A simple
Hebb-like dilution algorithm that reaches the optimal generalization ability is presented in
section four. In the last section we close with a summary.
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2. The model for random input—output relations

The diluted perceptron classifies an input patigfraccording to

N
ot = Sgl'(\/lﬁ ZC,’J,‘E,-M>. (1)
i=1

Where J; are the components of the weight vector drawn at random from a distribution
P(J;). Thec; are binary decision variables which can take the values 0 or 1 and determine
whether the'th couplingJ; is removed or kept, respectively. For a given set of input—output
pairs{&”, S“}Z=1 the classification is correct if

1 N
s“ﬁ Zc,J,-EfL}O Yu=1...,p. @)
i1

We suppose that the inpug’ are drawn at random from a distribution with zero mean
and unit variance and we choosge= +1 with equal probability and independently of the
inputs. The concentration of the remaining bonds is defined to seN 1YY, ¢; and
thus lies between 0 and 1.

We are interested whether the maximum number of pattegas which are correctly
classified, can be of the order of their input dimensignresulting in a critical storage
capacity ofa; = pmax/N, for a fixed value of the concentratianof remaining bonds in
the thermodynamic limi{N — oo). Let us first consider the extreme cases. Eet 0
all bonds have been removed and no classification is possible, sactlrat 0) = 0. For
¢ =1 all bonds are present and the classification is at random, sadfiat 1) — 0 as
N — oo. For intermediate values efwe shall calculater:(c) using Gardner’s phase space
approach [6, 7].

From a technical point of view the problem is related to the Ising perceptron [7, 16]
and other discrete models [9], as well as to the knapsack problem [10, 11], where binary
dynamical variables also appear. Note that in contrast to the common approach where the
couplingsJ; are the dynamical variables, here they represent, in addition to the patterns, a
guenched disorder which has to be averaged out.

For a fixed concentration, the number of allowed configurations according to (2) is
given by

)4 1 N N
N(c) = O st — i JiE — K ) Ok i~ . 3
(0) %}:l:[l (s m;c.l’g‘l K) K(;c CN) (©)

We introduce, as usual, the stability parameterwhich should be positive. The
corresponding entropy per bond of the microcanonical ensemble follows from

1 1 .

S(e) = NN (o)) = lim -~ In(N" (©)) @)
where the last equality results from the replica trick. The quenched aveftages have
to be performed over the distributions of the patterns, outputs and couplings. Following the
steps of the calculation by Gardner and Derrida [7] one can rewrite the replicated number
of configurations using the integral representation of the theta function in (3). The averages
over the pattern and output distributions lead to the exponential factor

(Mee(-3 () ), ©
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Herex;; are the conjugate variables to the local fieldsand« denotes the replica index
running from 1 ton. The average over the couplings has still to be done. A straightforward
evaluation, however, leads to an expression which cannot be rewritten in terms of an
exponential, as it is convenient, for the argument of the exponent in (5) is not necessarily
infinitesimal due to the sum over all patterns. Instead, we introduce at this point the order
parameters

1N
= Zlel c; (a,B=1,....,n;a <p) (6)

le"‘ (@=1,...,n) (7)

and leave the average over the distribution of the couplings for the integral representations
of the delta functions fixing;® and Q. In addition we have a third order parameter

E* which fixes the concentration We seek a replica symmetric solution, ig? = ¢,

Q% = Q andE® = E. Carrying out the sum over th¢ and using the saddle-point method

we obtain for the entropy in the thermodynamic limit:

. K—i-fl 1 1

+/ dJP(J)sz|n(1+exp(ﬁ|J|t+ 3(fJ? = FJ*—E))) (8)

where F and f are the conjugate order parametersytand Q respectively and we have
used the notations:

o= e &Py )—foo Dt )
= @ X) = i .

For the distribution of the couplingB(J;) we will focus on two cases|./;| = 1 (note,
that the entropy (8) depends only on the absolute valug)odnd J; drawn from a normal
distribution i.e. @ P(J) = DJ. In the first case it follows thaQ = ¢ from (7) and the
definition of c. We solve the saddle-point equatioh$/dg = 9S/0F = 0S/0E = 0. The
critical storage capacity as determined by Gardner and Derrida [7] would be reached as
g approaches. This, however, leads to a negative entropy of the system, as frequently
observed in discrete problems [13]. We therefore identify the critical storage capacity as
the value ofae at which the entropy (8) vanishes, as it has become the standard way by
now [9, 11, 14]. The resulting curve for the critical storage capagitis shown in figure 1
as a function of the concentratian As expectedr. vanishes at both extremes of We
observe a maximum ok, ~ 0.59 atc ~ 0.32. This means, that abo@t of the bonds
have to be removed in order to reach the maximal value.ofit is somewhat surprising,
since as a function of, the maximal number of configuratioris;} lies atc = 0.5 and is
exponentially larger inV than for any other value of the concentration. In section 4 we
will come back to this point.

It is worth noting, that the cas@g;| = 1 can be mapped onto the Ising perceptron with
couplings 0 or 1, as in (2) one can define the new pattgths= J;&/* and view thec; as
the couplings. The distribution of the’* also has zero mean and unit variance. The critical
storage capacity for thé, 1) Ising perceptron has been calculated by Gutfreund and Stein
[9] with the zero-entropy (ZE) ansatz and was found to be 0.59 in agreement with the value
found here at the maximum.

We performed an analysis of the local stability of the replica symmetric (RS) solution
according to de Almeida and Thouless (AT) [15] and obtained the curve denoted as AT line
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Figure 1. The critical storage capacity. as a function of the concentratianfor x = 0

and random outputs. The full line is the zero entropy RS-solutiorjfdr= 1 and the long
broken curve is the corresponding AT-line beyond which it would become locally unstable. The
broken curve is the RS—solution fdr drawn from a normal distribution. Results from complete
enumerations of systems with sizes®ON < 24 are shown as circles and triangles, for both
choices ofP(J;) respectively. Standard errors are of symbol size.

in figure 1. For values of that lie above this curve the RS solution is locally unstable. Our
result forac(c) lies below the AT line for alk and is therefore locally stable. Nonetheless,
global stability is not assured. For this reason we also performed complete enumerations
of all possible dilution vectors for finite systems in the rang&l V. < 24. Forc =1
finite-size effects lead ta. ~ N1, since the probability of classifying one pattern correctly
by chance i%. In contrast, for values af around the maximum, the numerical results seem
to underestimate the theoretical values. A finite-size scaling analysis :ﬁor% gives the
extrapolated value ofc(%) = 0.586+0.004 for N — oo in agreement with the RS-solution
(0.58935) at the same concentration. The general shape of the curve is well confirmed by
the numerical results.

In the case where thé are drawn at random from a normal distribution the picture
changes quantitatively. Now, for a fixed(J;£/") = 0 as before, but(J;£/*)?) = Jl?(g,.ﬂ) =
J2 which is in general different from unity as in the previous case. As a consequ&nce
is different fromc and we have to solve the additional saddle-point equatisiy® Q =
dS/df = 0. The ZE condition yields fokx = O the critical storage capacity, also depicted
in figure 1. Similarly, the curve has a maximumcat- 0.34, the critical capacity however
is lowered over a wide range of the concentration with respect to the binary case. Our inter-
pretation of this effect is that in the Gaussian case the dilution variables are mainly used to
remove the large couplings$J;| > 1) and only a few of them remain for learning. There-
fore the storage capacity. is lower than for the binary weights. The order parameler
measures the effective size of the remaining compongntsor all c the RS solution gives
0 < ¢, supporting the above argument. In addition we measured the probability distribution
of the size of remaining couplings in complete enumerations and found that large couplings
are likely to be removed. The values @f for finite N are displayed in figure 1 as well.
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3. Learning with a teacher

A teacher perceptroi3 classifies a patterg” according to

"o i . M)
s sgn( JNB & (20)
We choose a teacher vector which is not diluted and has the normaliz&fice N. A
transition to perfect generalization through dilution cannot be expected as in other discrete
systems where the structure of teacher and student coincides [23]. The student perceptron
with components; J; can only remove part of its weights in order to learn perfectly a set
of examples given by (10), resulting in a finite storage capacity.

A straightforward evaluation of the entropy under the RS assumption yields

S() =2a/DtH (Wt) nH (K+ﬁt>

Vg — OR? 0—-gq
+%Fq - %fQ - %CE + %GR\/E + / dBPr(B) f dJ P(J)

X/Dtln (1+exp<ﬁ|]lt+;(fJZ—FJZ—E—GBJ))) (11)

where the overlagR = Y, ¢;J; B;/(~/ON) between diluted student and teacher, and its
conjugateG has been introducedPr(B) is the distribution of the teacher components.

We focus again on the two cases whérgd = |B;| = 1 or both chosen independently
at random from a normal distribution. The corresponding critical storage capacity
determined with the ZE condition is shown in figure 2 as a function of the concentration
of remaining bonds. Once more, we observe a maximuroét ¢ ~ % The critical
storage capacity is higher than for random outputs indicating that the problem, although
unlearnable, is easier with examples from a teacher.

An important point to note is that the generalization ability defined as the probability
to classify a new unseen pattern correctly (as the teacher) is poor compared with the value
which could be achieved biptelligent dilution. Forc = 0.3, R ~ 0.32 in the binary case
|J;| = |B;| = 1, whereas an overlap & = /0.3 ~ 0.55 could be possible according to the
following argument. The produa@®; J; should bet1 for as many sites as possible in order to
maximizeR. SinceB; andJ; are drawn at random they will coincide ii/2 of the cases for
N — oo. Fore < 0.5 we choose all those = 1 for which B; J; = +1 up to a total number
of ¢N, so thatRmax = cN/(4/cN) = J/c. If cis larger than (b then we also have to add up
(¢cN — N/2) times a value of-1 and Rmax = (N/2—cN + N/2)/(\/cN) = (1 —¢)/+/c.
Perfect storage without errors lowers the overRapan effect known asverfitting which
can be overcome by allowing a finite training error (see section 4).

Up to now, we have assumed, that studdnand teachetB are uncorrelated before
the dilution. In biological systems however, we would rather expect to find synaptical
structures, which are alreagyeparedfor a specific task before the learning process starts.
In our model we can mimic it by allowing an initial positive overl&, and therefore
certain similarity, between teacher and student. Let us choose

1+R0 1—Ro
2

PJ) = 8(J —B) +

8(J + B) (12)

with 0 < Ry < 1. In (1 + Rp)N /2 of the cases the components of teacher and student will
coincide and in(1 — Ry) N /2 they will be opposed. Since we are not allowed to change the
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Figure 2. The critical storage capacity. as a function of the concentratianfor « = 0 and
outputs from an undiluted teacher perceptron. The upper curve igfoe |B;| = 1 and the
lower for J; and B; both Gaussian. The circles and triangles are the corresponding numerical
results from complete enumerations of system with sizes up te 20, standard errors are of
symbol sizes.
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Figure 3. The critical storage capacity; as a function of the concentratienfor x = 0 and
outputs from a teacher withB;| = 1 for different values of the initial overlago betweenJ
andB. Ry =1.0,0.9,0.7, 0.3, 0.0 (from top to bottom). The circles are numerical results from
complete enumerations of systems with sizes¥ < 400 andc close to 1.

values ofJ;, but at best to remove the bond, we will not reach perfect generalization even
for large Ro. The same would hold even if we chose a diluted teacher.



Learning by dilution in a neural network 7759

We have calculated the critical storage capacity |y = 1 as a function ofRy and
¢ and find the results plotted in figure 3. FBs = 0 we recover the uncorrelated case,
whereas with increasin@®, the storage capacity is enhanced for all At the same time
the maximum of the curve moves towards higher values of the concentration, as less bonds
have to be removed in order to mimic the teacher. Rgr= 1 teacher and student are
identical before dilution. Although this situation is of less relevance from a biological point
of view, it offers an interesting physical solution. If a fraction of the bonds is now removed,
we obtain a finite storage capacity. For increasing concentratiave would expect the
capacity to increase at the same time. Above 0.82, however, we find that it decreases
and finally tends to zero far — 1. At ¢ = 1 we havex, = oo per definition, hence = 1
is a singular point. This surprising behaviour may be understood if we look at the annealed
approximation [22] for the entropy

1
Sann(c) = N |n<<N(C)>> (13)

For Ry = 1 we haveR = ./c, thus the probability that a pattern is classified correctly is
(1—nm~tarccos/c). Since all possible dilution vectors have for fixethe same overlag
with the teacher, the averaged numbgY (c))) of allowed configurations simply factorizes
into the the total numbe(rg\,) and the probability thap patterns are classified correctly:

N 1 b
(N(@©)) = 1— = arccosy/c | . (14)
cN T
Using the ZE condition we obtain in the thermodynamic limit for the critical storage capacity
in the annealed approximation
clnc+1 -0 In(1-o¢)

ann(c) = 15
anr(€) In(1— 1 arccos/c) (15)

which for ¢ — 1 results in
Aann(c = 1) — |iml—4rr\/1—c|n\/1—c—> 0. (16)

Since agnn(c) is an upper bound fowc(c), the critical storage capacity has to decrease

to zero as well wherr tends to 1. From (14) we see, that although the probability of
classifying one pattern correctly tends to onedes 1, at the same time the total number of
dilution vectors decreases rapidly, such that the averaged number of allowed configurations
is no longer exponentially large iN. Perfect storage of patterns is different from optimal
generalization, which in this case becomes better the clogeto 1. In figure 3 we also
included results from complete enumerations of systems witki 2% < 400 for Ry = 1

andc close to 1. They confirm thai. decreases in this region.

4. A simple Hebb-like dilution algorithm

As we have seen in the previous sections, Gardner’s method is very powerful when asking
if there exists, on average, a setepuch that all perceptron conditions (2) are satisfied, but

it does not provide us with the corresponding dilution vector for a specific set of patterns
&*, outputss* and couplings/;. The development of a learning, or in our case dilution
algorithm, is an independent task, which in the case of binary variaples0, 1 becomes
extremely difficult and compares with the binary perceptron problem or the knapsack
problem. In the worst case, the number of computational steps towards the optimal solution
scales exponentially with the siZé of the system. The most successful approaches try to
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find the global minimum of a properly defined energy function, which penalizes the violation
of constraints, by using sequential descent [17] or simulated annealing [18] strategies.
Although an algorithm based on mean-field annealing has proven to be very effective in
finding solutions to the knapsack problem [10], none of the known techniques yields the
critical values for the storage capacity predicted by Gardner calculations. Typically, in large
systems, the solutions still violate a finite fraction of the imposed constraints.

In view of these general difficulties, we cannot expect to find the optimal dilution vector
¢, which allows us to store perfectly.N patterns for largeV, within a reasonable time.
Rather we present here a simple dilution algorithm, which gives us an insight into the basic
properties of the solutions and has optimal generalization ability fer co.

Our aim is to fulfil all constraints (2) by removing a fracti¢h— c) N of the bonds/;.

If we think of the termsl,-gi"s“ as matrix elements;,, of an N x p matrix, then we want all

p vertical sumstV:1 a;,(w=1,..., p) to be positive. For this purpose, we are allowed
to remove(l — ¢)N rows of the matrix. The idea is to remove those, which contain many
negative elements;,, since these contribute in many vertical sums negatively. Let us take
away all rowsi with horizontal sumsy"7_; a;,, smaller than a thresholt, so that

1 & )
=0 S gl =), 17
¢ 9<VQVM:1151S ! 4

The largerh, the morec; will be zero, leading to a lower concentration From a different
perspective one can view (17) as comparing the Hebb couphhgs Zi:l gi“sﬂ/\/ﬁ of
the problem [19] withJ;, the ones imposed at random. If their prodégt; is larger than
the threshold:, thenJ; is accepted as the coupling strength. /Abecomes more and more
positive, this is only the case #l; and J; agree in their sign.

Let us now give a simple derivation of the critical storage capacity for random input—
output pairs andJ;| = 1, which results from (17) by allowing a certain percentage of
errors. For simplicity, suppose thgt' = +1 with equal probability. Theng;, = +1
with equal probability and the horizontal and vertical sums have, in the mit> oo, a
Gaussian distribution with zero mean and variapcand N, respectively. According to
(17) we remove all horizontal sums which are smaller thaThe resulting concentration
isc = fh"/‘}ﬁ Dz = H(h/4/a) and the new mean of the horizontal sums(i4S) =

ﬁexp(—%hz/a)/Vchz. The new vertical sums still have a Gaussian distribution, but
now with mean(VS) = ¢(HS)/a and varianceeN for N — oco. The fraction of errors is
thus equal to the integral over the Gaussian tail below zero:

° 1 1 1(z —(VS)? (VS)
learning error= ¢, = / —— ——eX (—) =H () . 18
J ) —00 V21 A/cN P 2 cN JeN (18)
For a fixed errok,. = H(A) and fixed concentration, we obtain for the storage capacity

exp(—(H™(c)?)
2 cA?

with H=1(x) the inverse function of k). Figure 4 shows the resultingfor A = 1 (¢, ~

15.9%) as a function ofc. The maximum ofx is reached at ~ 0.27, which is not too

far from 032, the concentration at which the maximgl was obtained according to the

Gardner calculation with the ZE condition (see figure 1). Also, the shape of the curve is

similar, for different values ok, (or A), a(c, A) is simply rescaled. At first sight one

would expect that ag increases, the mean of the vertical sufdS) increases, leading to

a lower learning error. This however is prevented by two effects. FirstH8s increases,

(VS) does not necessarily increase, siteg&) ~ ¢(HS) andc is lowered dramatically with

alc, A) = (19)
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Figure 4. The storage capacity as a function of the concentratienfor |J;| = 1, « = 0 and
A = 1(e. ~ 15.9%). The lower curve is for randomly chosen outputs and the upper curve for
outputs from a teacher witfB;| = 1.

increasingkz. As a result, the maximal storage capacity would be &t 0.5 for fixed | .

The second effect is that the width of the distribution of vertical sums is proportional to
J/c, lowering the learning error for smaller valuescfIf ¢ is too small, however, the gain

is compensated by the exponential factorli{t), which tends to zero. As a consequence,
the maximum storage capacity for fixed lies at a value ot somewhat smaller thanf

In figure 5 the learning errat (c, «) is plotted as a function ai for h = 0(< ¢ = 0.5).

For smalla, €_ is small, as is typical for the Hebb couplings and tends to 0. fes oo.

A more interesting quantity is the generalization ergr defined as the probability of
correctly classifying a new patter¢’, which does not belong to the training set. For a
random input—output relatioas = 0.5, since the classificatios® of £° is at random. In
the presence of a teach®, however, we can expect to reach a lower generalization error.
A straightforward evaluation (see e.g. [20]) yields fdy| = 1

eLic, o) = 2/000 DsH <;§\/¢%) (20)

eglc, ) = % arccosk (21)
with

¢ =3(H(h) +Hhy))p, (22)

R = 2\])E<Bi(H(h—) —H())) s, (23)

g = 2\/;7 <exp<—;hz_) + exp(—;hi»& (24)
where

2 (25)
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Figure 5. Learning errore. (full lines) and generalization erreg (broken lines) as a function
of « for h = 0(¢< ¢ = 0.5) and|J;| = 1 for random outputs, a binary teacher and a Gaussian
teacher.

The average is to be performed over the distributix{B;) of the teacher components
B;. As before,c is the concentration of the remaining bonds @the normalized overlap
between diluted student and teacher. The parameteot to be confused with defined by
(6)) does not seem to have a direct physical meaning, but in a certain way it does take into
account the randomness which is still inherentRoless than 1. In the extreme case where
we ignore the teacher by setting @} = 0, we obtainR = 0, g = exp(—%hz/ot)/«/me
and recover fok_ the expression for random outputs (18). The above resul femdeg
is similar to the one obtained with the clipped-Hebb algorithm for the perceptron [21]. This
comes as no surprise, as our prescription (17) is also in some sense a ulgppioly the
bonds.

For all« andc we find ¢, < ¢g and fora« — oo andc fixed, ¢, — €g, as it should.
The most important feature is, however, that in this same limit the optimal generalization
error is reached. Far — oo andc fixed by choosing: appropriately, we obtain from (23)
for |B;| = 1:

Je for ¢ <
R=4y1-¢

Je

(26)
for ¢ >

NI NI =

which is exactly the maximal overlap that can be achieved by remoidingc) N bonds
(see section 3). For a teacher with Gausdkanwe find in the same limit:

R= exp(—i(H%c))?) (27)

2mc

which is also the optimal overlap for this case, as can be shown easily.
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5. Conclusion

We have shown, that it is possible to store information in a neural network solely by the
dilution of synapses. Using Gardner’s phase-space approach the critical storage capacity of a
perceptron with random coupling vector was calculated as a function of the concentration of
remaining bonds for random input—output relations. We found a maximum 0.6 of the
capacity atc ~ % ie. after% of the bonds have been removed. Similar results are obtained
if the desired outputs are generated by an undiluted teacher perceptron, whose coupling
vector is uncorrelated to the initial student vector. In this case perfect learning is possible
up to a critical capacity.(c), only. If the initial network has some prior knowledge, i.e.
if there is a nonzero overlap between the teacher and the initial student vector we find that
the maximum of the capacity moves towards higher concentrations

The problem of finding the subset of couplings which have to be removed is
extremely difficult and is comparable with problems which belong to the NP-complete
class. Nevertheless, properties of a Hebb-like learning algorithm, which allows for a finite
fraction of errors in the training set, were calculated. The algorithmxfes oo reaches
the maximal overlap between the diluted random student and the undiluted teacher and
thus the lowest possible generalization error. As the Hebb-rule, it is a local algorithm that
accumulates information about the training set and decides at the end of this batch process
which of the couplings are removed. It would be more desirable to find a prescription that
removes disturbing couplingsn-line In contrast to common on-line learning algorithms
[12], where infinitesimal changes of the coupling vector are performed in every time step,
here we would remove single couplings. Whether this procedure can give satisfactory
results, similar to those obtained in the batch process, also for unlearnable rules, remains
open and should be studied in the future.
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